Schatten Class Membership of Hankel Operators on the Unit Sphere

نویسندگان

  • Quanlei Fang
  • Jingbo Xia
چکیده

Let H(S) be the Hardy space on the unit sphere S in C, n ≥ 2. Consider the Hankel operator Hf = (1 − P )Mf |H(S), where the symbol function f is allowed to be arbitrary in L(S, dσ). We show that for p > 2n, Hf is in the Schatten class Cp if and only if f − Pf belongs to the Besov space Bp. To be more precise, the “if” part of this statement is easy. The main result of the paper is the “only if ” part. We also show that the membership Hf ∈ C2n implies f − Pf = 0, i.e., Hf = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

On the Membership of Hankel Operators in a Class of Lorentz Ideals

Recall that the Lorentz ideal C− p is the collection of operators A satisfying the condition ‖A‖p = ∑∞ j=1 j sj(A) < ∞. Consider Hankel operators Hf : H(S) → L(S, dσ) H(S), where H(S) is the Hardy space on the unit sphere S in C. In this paper we characterize the membership Hf ∈ C− p , 2n < p <∞.

متن کامل

Schatten Class Hankel Operators on the Bergman Spaces of Strongly Pseudoconvex Domains

In this paper, we characterize holomorphic functions / such that the Hankel operators Hj are in the Schatten classes on bounded strongly pseudoconvex domains. It is proved that for p > In , Hj is in the Schatten class Sp if and only if / is in the Besov space Bp ; for p < In , Hj is in the Schatten class Sp if and only if / = constant.

متن کامل

A Local Inequality for Hankel Operators on the Sphere and Its Application

Let H(S) be the Hardy space on the unit sphere S in C. We establish a local inequality for Hankel operators Hf = (1 − P )Mf |H(S). As an application of this local inequality, we characterize the membership of Hf in the Lorentz-like ideal C p , 2n < p <∞.

متن کامل

Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball

For positive Toeplitz operators on Bergman spaces of the unit ball, we determine exactly when membership in the Schatten classes Sp can be characterized in terms of the Berezin transform.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009